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FITTING MULTIVARIATE MODELS TO COMMUNITY DATA:
A COMMENT ON DISTANCE-BASED REDUNDANCY ANALYSIS
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Abstract. Nonparametric multivariate analysis of ecological data using permutation
tests has two main challenges: (1) to partition the variability in the data according to a
complex design or model, as is often required in ecological experiments, and (2) to base
the analysis on a multivariate distance measure (such as the semimetric Bray-Curtis mea-
sure) that is reasonable for ecological data sets. Previous nonparametric methods have
succeeded in one or other of these areas, but not in both. A recent contribution to Ecological
Monographs by Legendre and Anderson, called distance-based redundancy analysis (db-
RDA), does achieve both. It does this by calculating principal coordinates and subsequently
correcting for negative eigenvalues, if they are present, by adding a constant to squared
distances. We show here that such a correction is not necessary. Partitioning can be achieved
directly from the distance matrix itself, with no corrections and no eigenanalysis, even if
the distance measure used is semimetric. An ecological example is given to show the
differences in these statistical methods. Empirical simulations, based on parameters esti-
mated from real ecological species abundance data, showed that db-RDA done on multi-
factorial designs (using the correction) does not have type 1 error consistent with the
significance level chosen for the analysis (i.e., does not provide an exact test), whereas the
direct method described and advocated here does.

Key words: distance measures; distance-based redundancy analysis (db-RDA); hypothesis testing;
linear models; MANOVA; multivariate analysis; nonparametric; partitioning; principal coordinate
analysis; redundancy analysis; semimetric measures; statistical method.

INTRODUCTION

Many ecologists are faced with the task of analyzing
the simultaneous responses of many species to several
factors in some experimental design. This requires a
multivariate analysis, where each species is considered
a variable. The traditional approach is to use parametric
MANOVA. For ecological applications, however, non-
parametric approaches may be preferred for three rea-
sons. First, the assumption that counts of abundances
of species conform to a multivariate normal distribution
(required by MANOVA) is not generally, or even like-
ly, to be true. Distributions of abundances of species
are often highly aggregated or skewed, and there are
also usually rare species that contribute many zeros to
ecological data sets. Second, partitioning in traditional
MANOVA implicitly uses Euclidean distances among
sampling units. By partitioning, we mean attributing
additive proportions of the total variability to individ-
ual factors in an experimental design. It is generally
agreed that the Euclidean distance measure is not ap-
propriate for use with ecological data of species abun-
dances (e.g., Faith et al. 1987, Clarke 1993, Legendre
and Legendre 1998). Finally, there are often more var-
iables (species) in the system than there are sampling
units (or degrees of freedom), which makes the tradi-
tional MANOVA statistics impossible to calculate.
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Several nonparametric multivariate methods for use
in biology, ecology, and the social sciences have been
proposed (Mantel 1967, Mantel and Valand 1970, Hub-
ert and Schultz 1976, Mielke et al. 1976, Smith et al.
1990, McArdle 1991, Clarke 1993, Pillar and Orlóci
1996). For these, a test statistic is obtained directly
from distances calculated among sampling units. Thus,
a distance measure other than the Euclidean distance
may be used as the basis of the analysis. Also, the P
value associated with these tests is calculated by per-
mutation (i.e., shuffling of the sampling units across
treatments and recalculating the test statistic to obtain
its distribution under a true null hypothesis), thus
avoiding any need to comply with the assumption of
multivariate normality.

A sharp dichotomy exists among the methods pro-
posed. First, there are those that can be based on any
distance measure of choice, including semimetric mea-
sures such as the Bray-Curtis measure (Mantel 1967,
Hubert and Schultz 1976, Smith et al. 1990, Clarke
1993). For these, the variability is not partitioned ac-
cording to an experimental design, because it has pre-
viously been unclear how to partition a semimetric
measure such as the Bray-Curtis measure. Second,
there are those that can partition the total variation
according to any linear analysis of variance model, but
these must use metric distance measures, such as x2 or
Euclidean distances (Mielke et al. 1976, Pillar and Or-
lóci 1996). In the latter category, one may include the
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traditional MANOVA statistics, such as Pillai’s trace
(1955), but where permutations are used instead of ta-
bled values for obtaining probabilities.

Recently published in Ecological Monographs, Le-
gendre and Anderson (1999, hereafter referred to as
LA) have proposed a method called distance-based re-
dundancy analysis (db-RDA). It has been presented as
advantageous over previous methods and as especially
appropriate for use in ecology for two important rea-
sons: (1) it can be based on any distance measure of
choice (including the semimetric Bray-Curtis measure),
and (2) it can provide a multivariate partitioning to test
any individual term in a multifactorial ANOVA ex-
perimental design. This is a significant development,
because it is precisely such designs that are most often
used in ecological studies, due to the inclusion of sev-
eral interacting factors and/or spatial and temporal rep-
lication.

To achieve this end, db-RDA uses principal coor-
dinate analysis (Gower 1966). Gower (1966) has shown
how any distance matrix can be written as a linear form
of Euclidean coordinates. Now, when a semimetric
measure such as the Bray-Curtis distance measure is
used (Bray and Curtis 1957), such an analysis produces
both real and imaginary Euclidean coordinates (vec-
tors), corresponding to positive and negative eigen-
values, respectively. The big dilemma faced by LA and
previous workers was this: what does one do with the
coordinates corresponding to negative eigenvalues, i.e.,
the imaginary (or complex) portion of information in
the semimetric distance measure?

Others have suggested simply leaving the imaginary
portion out of the analysis and using the coordinates
corresponding to positive eigenvalues only (e.g., Pillar
and Orlóci 1996). It is generally thought that, propor-
tionally, not much information will be tied up in these
imaginary axes, and, in any event, no ecologically
meaningful interpretation can necessarily be found for
them, as separated from the real axes. Thus, although
ecologists generally agree that a semimetric index,
namely the Bray-Curtis measure, seems to provide the
most meaningful intuitive measure of dissimilarity in
ecological community structure (Odum 1950, Hajdu
1981, Faith et al. 1987, Clarke 1993, Legendre and
Legendre 1998), the mathematically complex portion
of the information inherent in the measure has generally
been ignored.

The LA approach to this dilemma was to ‘‘correct’’
for negative eigenvalues by adding a constant to the
squared distances in the manner of Lingoes (1971)
(called correction Method 1 in LA, see also Gower and
Legendre 1986). It is not altogether clear, however,
what the effect of adding such a constant might be on
the test statistics and corresponding P values for the
ensuing multifactorial MANOVA on corrected coor-
dinates, although LA did provide some simulation re-
sults for constants added to Euclidean distances.

Here we give a direct method of partitioning a sym-

metric distance matrix according to any linear model.
Our purpose is to show that multivariate models (in-
cluding MANOVA) based on semimetric distances can
be tested without using any correction to distances.
This is so because the negative eigenvalues simply cor-
respond to negative sums of squares. We show that db-
RDA inflates the total sum of squares in the analysis.
The approach of using only the axes corresponding to
positive eigenvalues also inflates the total sum of
squares. While the correction advocated by LA, being
monotonic with respect to squared distances, does not
affect P values obtained by permutation in the case of
one-way ANOVA (as shown by LA for Euclidean dis-
tances, this is also true for the semimetric Bray-Curtis
distances), it does affect P values in more complex
models, e.g., multifactorial designs.

First we provide the necessary theory for our ap-
proach. We then reanalyze a data set presented in LA
as an example to demonstrate the difference between
our approach and db-RDA. Finally, we provide some
simulations for two-way factorial designs to investigate
how db-RDA with the correction advocated by LA, or
the use of real axes only, may affect rates of rejection
of a true null hypothesis (type 1 error).

THEORY

The sums of squares associated with any term in any
linear model (i.e., for MANOVA, MANCOVA, or mul-
tivariate regression) can be calculated directly from a
distance matrix. This is because, for any centered data
matrix Y(n3p) (of n sample units for each of p variables),
the relevant information contained in the ( p 3 p) inner
product matrix Y9Y (used in classical multivariate anal-
ysis) is also contained in the (n 3 n) outer product
matrix YY9 . In addition, an outer product matrix can
be obtained from any (n 3 n) distance matrix (Gower
1966), thus allowing the analysis to be based on a dis-
tance measure of choice, including semimetric mea-
sures like Bray-Curtis. (For earlier references and dis-
cussion, see Seber [1984:238]).

Let X(n3m) be a model (aka design or regression) ma-
trix, with m the number of parameters. Traditional mul-
tivariate analysis proceeds through partitioning of the
( p 3 p) total sum of squares and cross products (SSCP)
matrix, which is the inner product Y9Y . The total sum
of squares (ST) is the trace, or sum of diagonal elements
(sums of squares for each variable) in this matrix,
which we will symbolize by tr(Y9Y). Partitioning can
be done according to the linear model Y 5 Xb 1 e,
where b is the matrix of model parameters, e is the
matrix of errors, and we wish to test H0 : b 5 0. The
least-squares solution for b is B 5 (X9X)21 X9Y. The
matrix of fitted values is Ŷ 5 XB 5 HY, where H is
the idempotent ‘‘hat’’ matrix X(X9X)21 X9 (e.g., John-
son and Wichern 1992). So the matrix of residuals is
R 5 Y 2 Ŷ 5 (I 2 H)Y. The total SSCP matrix is
thus partitioned into predicted (model) and residual
SSCP matrices in the following manner: Y9Y 5 Ŷ9Ŷ
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1 R9R. Also, ST is partitioned into hypothesis sums of
squares SH 5 tr(Ŷ9Ŷ) and residual sums of squares SR

5 tr(R9R), as follows:

ˆ ˆtr(Y9Y) 5 tr(Y9Y) 1 tr(R9R). (1)

An appropriate statistic to test the null hypothesis of
no effect of the model parameters is a pseudo F sta-
tistic:

ˆ ˆtr(Y9Y)/(m 2 1)
F 5 . (2)

tr(R9R)/(n 2 m)

Note that if there is only one variable, then Eq. 2 re-
duces to Fisher’s univariate F statistic. For a nonpara-
metric test, the P value may be obtained as P 5 P(Fp

$ F ) where Fp is the value of F obtained by a random
equiprobable permutation across the n units. The de-
grees of freedom (m 2 1) and (n 2 m) are not necessary
in Eq. 2 for the test by permutation, as they remain
constant.

Now, the same partitioning can be achieved using
outer product matrices. This is so because, for any two
matrices A(n3p) and B(p3n), tr(AB) 5 tr(BA). Thus,
tr(Y9Y) 5 tr(YY9). The (n 3 n) outer product matrix
contains the same information that the (p 3 p) inner
product matrix contains, in an exact duality, so far as
the trace is concerned. So, exactly the same partitioning
can be achieved using outer product matrices as

ˆ ˆtr(YY9) 5 tr(YY9) 1 tr(RR9). (3)

Indeed, even if all that is available is an outer product
(n 3 n) matrix (YY9) and one does not know Y, par-
titioning is still achievable because ŶŶ9 5 H(YY9)H
and RR9 5 (I 2 H)(YY9)(I 2 H) (McArdle 1991).

The reason this duality is important is that an (n 3
n) outer product matrix, ready for partitioning, can be
obtained from any (n 3 n) symmetric matrix of dis-
tances or dissimilarities (Gower 1966). Namely, let D
5 (dij) be an (n 3 n) distance matrix. Let A 5

then calculate Gower’s centered ma-2(a ) 5 (2½ d ),ij ij

trix (G) by centering the elements of A, i.e.,

1 1
G 5 I 2 119 A I 2 1191 2 1 2n n

where 1 is a column of 1’s of length n. Matrix G is
then an outer product matrix that can be partitioned
directly in the manner we have described. Thus, re-
placing (YY9) with G, we have ST 5 tr(G) and the
pseudo F statistic is

tr(HGH)/(m 2 1)
F 5 . (4)

tr[(I 2 H)G(I 2 H)]/(n 2 m)

This can be tested using permutation. Once again, the
constants (m 2 1) and (n 2 m) can be dropped from
Eq. 4 for the permutation test. We have included them
to maintain the relationship of this statistic with
Fisher’s F ratio: namely, for one variable and Euclidean
distances, Eq. 4 is the traditional univariate F. This is

a type III statistic (sensu Shaw and Mitchell-Olds 1993)
and is therefore suitable for regression, MANCOVA,
MANOVA, and unbalanced experimental designs. Par-
titioning for multifactorial designs is an easy extension
of this procedure. An appropriate pseudo F ratio can
be constructed as in Eq. 4 for terms in mixed or nested
models, using relevant traces of outer product matrices.

If D is a matrix of Euclidean distances, then G 5
(YY9) and Eq. 4 is exactly equal to Eq. 2. This is how
classical methods are based implicitly on the Euclidean
distance measure. The great advantage of the approach
using outer product matrices is that one is not restricted
to using Euclidean distances as the basis of the analysis.
G can be calculated from any symmetric distance ma-
trix, and the test statistic in Eq. 4 can then be calculated
directly. Thus, one can fit any linear model to metric
or semimetric distance matrices, without the use of any
corrections or the loss of possibly relevant information.
Individual model parameters (or sets of them) can then
be tested by permutation. (Note that we chose to con-
sider the centered data matrix Y in order to avoid com-
plexity in notation, but without any loss of generality.
It is not necessary to center the raw data before cal-
culating distances for this analysis).

As an alternative to the direct calculations that we have
described, one can consider the eigenvalues and eigen-
vectors of G in a principal coordinate analysis, as in LA.
Here, the sum of the eigenvalues of G is equal to the
total sum of squares. The essential point is that this re-
lationship holds, even if some of the eigenvalues are neg-
ative. That is, if ll for l 5 1, . . . , r denote the r nonzero
ordered eigenvalues of G, and if there are p positive and
q negative eigenvalues (p 1 q 5 r), then

p p1qr

S 5 tr(G) 5 l 5 l 2 l . (5)O O OT l l l) )l51 l51 l5p11

When coordinates are scaled to (i.e., so that theirÏll

sum of squares equals their corresponding eigenvalue,
as is customary in principal coordinate analysis), then
negative eigenvalues correspond to complex (imagi-
nary) axes (Gower 1966, Legendre and Legendre
1998). So, if ll have corresponding scaled centered
orthogonal coordinates ulj, j 5 1, . . . , n, we can let
ulj 5 ivlj wherever ll is negative, using toi 5 Ï21
indicate the imaginary axes. One can then separately
calculate the sums of squares corresponding to real and
imaginary portions of information as positive (ST(1))
and negative (ST(2)) sums of squares, respectively:

p p1qn n
2 2S 5 u and S 5 (iv ) .O O O OT(1) l j T(2) l j

l51 j51 l5p11 j51

Then ST 5 ST(1) 1 ST(2), or, perhaps more transparently,
since i2 5 21

S 5 S 2 zS z.T T(1) T(2) (6)

Thus, the total sum of squares in the system of n
points, as dictated by the distance measure, is equal to
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TABLE 1. Nonparametric multivariate analyses (sum of
squares [SS], F statistic, and P value) of data from an ex-
periment on the effects of grazers.

Source SS F P

Method 1: Direct analysis from Bray-Curtis distances

Grazers
Time
G 3 T
Residual
Total

1.09567
0.89766
0.23191
0.89315
3.11839

9.4491
31.6590

4.0895
. . .
. . .

0.008
0.001
0.001

. . .

. . .

Method 2: db-RDA with correction for negative eigenvalues

Grazers
Time
G 3 T
Residual
Total

1.39092
1.19292
0.82242

10.19377
13.60003

3.3825
3.6863
1.2707

. . .

. . .

0.001
0.001
0.001

. . .

. . .

Method 3: Positive sums of squares only

Grazers
Time
G 3 T
Residual
Total

1.11147
0.91682
0.36152
1.66922
4.05903

6.1489
17.3014

3.4111
. . .
. . .

0.001
0.001
0.001

. . .

. . .

Method 4: Negative sums of squares only

Grazers
Time
G 3 T
Residual
Total

0.01580
0.01916
0.12961
0.77607
0.94064

0.2438
0.7778
2.6303

. . .

. . .

1.000
0.903
0.001

. . .

. . .

Note: The methods used were (1) partitioning of the sums
of squares of the Bray-Curtis distances, calculated directly
from the distance matrix, (2) distance-based redundancy anal-
ysis (db-RDA) with correction for negative eigenvalues, (3)
partitioning using the principal coordinates associated with
positive eigenvalues only (real axes), and (4) partitioning
using the principal coordinates associated with negative
eigenvalues only (imaginary axes).

the positive sum of squares (corresponding to the real
axes) minus the absolute value of the negative sum of
squares (corresponding to the imaginary axes). It is not
necessary, therefore, to correct for negative eigenval-
ues. The correction advocated by LA (i.e., adding a
constant to each of the squared distances) inflates the
total sum of squares. Similarly, ignoring the imaginary
axes also inflates the total sum of squares.

Methods of permutation for multifactorial ANOVA
and multiple regression are discussed elsewhere (Ed-
gington 1995, Manly 1997, Gonzalez and Manly 1998,
Anderson and Legendre 1999). Permutation of raw data
(i.e., randomly shuffling individual sampling units
across treatments) provides an exact unbiased test for
the one-way case; for more complex designs, either the
permutation of raw data or of residuals will provide an
asymptotically unbiased test (Anderson and Legendre
1999). Permutation of raw data can be achieved by
simultaneously permuting rows and columns of matrix
G, as in a Mantel’s test. Permutation of residuals under
either the reduced or full model (Freedman and Lane
1983, ter Braak 1992) can be achieved by simulta-
neously permuting rows and columns of the (n 3 n)
matrix of residuals (I 2 H)G(I 2 H), where H contains
the hat matrix corresponding to either the reduced or
full model, respectively.

Pillar and Orlóci (1996) suggested using their Q sta-
tistic (equivalent to a sum of squares, described by them
for Euclidean metric measures only) as the test statistic
for a test by permutation of raw data. This is fine for
the one-way case, but sums of squares cannot be used
as test statistics in the case of multifactorial designs or
partial tests in regression. In multifactorial ANOVA,
unrestricted permutation of raw data (Manly 1997) or
permutation of residuals (Freedman and Lane 1983, ter
Braak 1992) will only give a correct test when the test
statistic used is pivotal, like a t or F statistic (Manly
1997, Gonzalez and Manly 1998, Anderson and Le-
gendre 1999).

EXAMPLE

We provide a reanalysis of the data set concerning
effects of grazing by gastropods in Australian intertidal
estuarine communities used in Legendre and Anderson
(1999) (LA; for further details of the study, see An-
derson and Underwood [1997]). The experimental de-
sign was a two-way factorial mixed model ANOVA
including the fixed effect of gastropod grazers (three
treatments: grazers excluded by cages, grazers not ex-
cluded, and a control for the presence of a cage) and
the random effect of three repeated trials of the ex-
periment, with n 5 8 experimental units per treatment
combination (Table 1). These data (18 taxa, after ex-
cluding gastropods and algal species) were transformed
to their fourth roots, and the Bray–Curtis distance mea-
sure was calculated between all pairs of units. Non-
parametric MANOVA was done for the entire data set
using one of three methods: (1) a direct analysis using

sums of squared Bray–Curtis distances and the pseudo
F ratio, as we have outlined, (2) distance-based redun-
dancy analysis (db-RDA) advocated in LA, including
the correction for negative eigenvalues, and (3) anal-
ysis of the data using real Euclidean axes only (cor-
responding to positive eigenvalues). For completeness
and to demonstrate the relationship among the methods,
we also provide (4) the analysis of the data using the
imaginary axes only (corresponding to negative eigen-
values). Permutation of residuals under the full model
was used to obtain P values in all cases (999 permu-
tations). Results using permutation of raw data gave
similar results (not shown here).

Table 1 shows that the total sum of squares, as cal-
culated directly from Bray–Curtis distances, can indeed
be partitioned into additive components corresponding
to factors in the experimental design. Second, notice
that the sum of squares for each term in the model
obtained directly from the distance matrix in nonpara-
metric MANOVA method 1 is equivalent to the positive
sum of squares in method 3, minus the negative sum
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of squares in method 4, providing direct evidence of
the validity of Eq. 6. Also, the analysis using db-RDA
has inflated the total sum of squares, as has the analysis
based only on real axes.

The inflation of total sum of squares in db-RDA re-
sults in the pseudo F ratios for each term being very
different from those obtained using the direct method
(method 1). The P values obtained under permutation
for db-RDA are not wildly different, however, from the
P values obtained for the direct test; for these analyses,
there is no change to the interpretation of results using
the direct method as opposed to db-RDA (method 2).

If one chooses to consider the redundancy (sensu
Gittins [1985], redundancy is the proportion of mul-
tivariate variability explained by particular factors,
analogous to R2 in multiple regression), then db-RDA
will give, in general, quite different results to the direct
approach. The proportion of explained variability for
the full model in the direct analysis is 71% (including
grazers at 35%, time at 29%, and their interaction [G
3 T] at 7%); whereas, for db-RDA, it is a mere 25%
(with grazers at only 10%, time at 9%, and their in-
teraction at 6%). Thus, the inflation of the total sum
of squares using db-RDA can have important effects
on the interpretation of results concerning variance par-
titioning (as in Borcard et al. [1992] or Anderson and
Gribble [1998]).

It is difficult, however, to determine from such an
individual example how the correction for negative ei-
genvalues might generally affect rates of type 1 error
in multifactorial designs. We provide some simulations
to investigate this.

EMPIRICAL SIMULATIONS

The proof in Appendix B of Legendre and Anderson
(1999) (LA) shows that adding a constant to squared
Euclidean distances results in a monotonic transfor-
mation of the pseudo F statistic. Thus, for a one-way
analysis, db-RDA and the direct method (method 2 vs.
method 1; see Example) will give the same P value
under permutation, because this proof also holds for
semimetric distance measures. However, db-RDA does
not necessarily give the same P values as the direct
method in the multifactorial case.

Simulations of multivariate ecological data sets were
done. Data from a study by Connell and Anderson
(1999) were used as the basis of simulations. This was
a study of the effects of predation by fish on assem-
blages of invertebrates and algae colonizing wooden
surfaces in the intertidal zone of the Port Stephens
Estuary in New South Wales (Australia; see Connell
and Anderson [1999] for details). For each of 21 taxa,
a mean and variance were estimated from the real data,
and correlations among all pairs of taxa were also es-
timated. New data were then generated by drawing ran-
domly from a multivariate normal distribution with pa-
rameters set to the estimates from the real data. The
values were rounded to the nearest integer, because

counts of the abundances of individual taxa cannot oc-
cur as noninteger values. Also, any negative values
obtained were set at zero. Thus, rare species with very
small means occurred in simulated data infrequently,
and data sets realistically contained many zeros. In ad-
dition, data were simulated in the same manner, but
using a multivariate lognormal distribution. For this,
means, variances, and correlations were estimated for
the original data after a transformation of x9 5 ln(x 1
1) was applied. Nonmetric multidimensional scaling
ordinations of simulated data with real data showed
that data generated in this way from either the multi-
variate normal or lognormal distribution gave reason-
able models for the joint multivariate distribution of
these taxa (not shown).

The data were generated for a two-way factorial de-
sign (factor A with two levels and factor B with two
levels), where the null hypotheses of no significant
main effects or interaction were true. We examined the
following situations: the fixed effects model (A and B
fixed), the mixed model (A fixed, B random), and the
random effects model (A and B random), where the
number of units per treatment combination was either
n 5 5 or 10, and where data were either left untrans-
formed or transformed to fourth root. For each situa-
tion, we simulated 1000 data sets. For each data set,
nonparametric MANOVA was done using (1) the direct
method, (2) db-RDA, and (3) axes from positive ei-
genvalues only, with probabilities obtained from 999
random permutations under the full model (ter Braak
1992). Type 1 error was recorded as the proportion of
the number of rejections of the null hypothesis out of
each of the 1000 simulations at a significance level of
0.05. The entire set of simulations was also done using
permutation of raw data, instead of permutation of re-
siduals (Manly 1997).

Similar results were obtained using either method of
permutation. Results using permutation of residuals are
shown in Table 2. As the rejection rate has a binomial
distribution, type 1 error rates falling outside the range
{0.036–0.064} were considered to differ significantly
from the expected value of 0.05. In general, type 1
error associated with the tests of significance of main
effects or interaction was not affected for the fixed-
effects model. However, with a mixed model or ran-
dom-effects model and n 5 5, db-RDA generally gave
results that were too conservative for tests of main
effects. This conservatism was most notable for data
simulated using the multivariate lognormal distribu-
tion, which is also a more realistic model of species
data (Table 2). With a larger sample size (n 5 10), the
type 1 error was, however, comparable for the three
methods and did not differ significantly from 0.05. Im-
portantly, type 1 error is not inflated by db-RDA, which
is good news for the studies that have used this ap-
proach. As there are many kinds of alternatives possible
in multivariate analyses, no explicit calculations of
power are provided here. We suggest that, if anything,
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TABLE 2. Empirical type 1 errors (proportion of rejections of a true null hypothesis) for tests of each of two main effects
(A and B) and their interaction (A 3 B) using 1000 simulated data sets, with P values calculated from 999 permutations
under the full model for each data set and an a priori significance level of 0.05.

n Transform Model

Factor A

Dir LA Pos

Factor B

Dir LA Pos

Interaction A 3 B

Dir LA Pos

Multivariate normal simulations

5 none fixed
mixed
random

0.038
0.042
0.043

0.037
0.031
0.040

0.038
0.037
0.043

0.058
0.044
0.044

0.056
0.044
0.040

0.062
0.044
0.041

0.054
0.047
0.042

0.054
0.045
0.043

0.055
0.050
0.042

4th root fixed
mixed
random

0.040
0.046
0.055

0.038
0.030
0.029

0.040
0.039
0.045

0.047
0.045
0.051

0.044
0.043
0.037

0.048
0.044
0.044

0.036
0.048
0.042

0.036
0.047
0.040

0.036
0.051
0.045

10 none fixed
mixed
random

0.042
0.056
0.046

0.042
0.047
0.041

0.043
0.047
0.044

0.052
0.057
0.046

0.054
0.060
0.030

0.053
0.060
0.034

0.062
0.041
0.041

0.062
0.041
0.041

0.063
0.041
0.042

4th root fixed
mixed
random

0.047
0.046
0.043

0.048
0.045
0.040

0.047
0.051
0.042

0.060
0.050
0.048

0.061
0.048
0.047

0.061
0.050
0.047

0.045
0.056
0.048

0.045
0.056
0.049

0.049
0.055
0.047

Multivariate lognormal simulations

5 none fixed
mixed
random

0.045
0.042
0.044

0.044
0.032
0.033

0.043
0.043
0.041

0.043
0.043
0.038

0.043
0.043
0.038

0.044
0.047
0.041

0.043
0.052
0.046

0.044
0.050
0.046

0.043
0.049
0.046

4th root fixed
mixed
random

0.050
0.041
0.045

0.050
0.023
0.034

0.053
0.029
0.032

0.049
0.045
0.047

0.048
0.046
0.033

0.050
0.045
0.039

0.052
0.049
0.053

0.051
0.048
0.050

0.054
0.048
0.053

10 none fixed
mixed
random

0.048
0.048
0.048

0.048
0.044
0.041

0.050
0.046
0.046

0.059
0.055
0.044

0.057
0.057
0.039

0.060
0.055
0.046

0.051
0.052
0.045

0.053
0.052
0.046

0.051
0.052
0.046

4th root fixed
mixed
random

0.050
0.042
0.049

0.050
0.052
0.039

0.053
0.048
0.043

0.062
0.039
0.055

0.064
0.038
0.034

0.065
0.037
0.039

0.052
0.050
0.048

0.051
0.051
0.045

0.054
0.053
0.048

Notes: The methods compared were (1) the direct analysis of Bray-Curtis distances (Dir), (2) the Legendre and Anderson
(1999) method of distance-based redundancy analysis (db-RDA) with correction for negative eigenvalues (LA), and (3) the
analysis of real axes, corresponding to positive eigenvalues (Pos). Numbers in bold indicate significant deviation from the
expected value of 0.05.

both db-RDA (method 2) and the use of real axes alone
(method 3) are generally more conservative tests and
so may have less power to detect alternatives than the
direct method (method 1).

DISCUSSION

The present results provide an improved method for
the analysis of multivariate response data in complex
designs (including MANOVA, MANCOVA, and mul-
tiple or partial regression) directly from a symmetric
distance or dissimilarity matrix. A more complete de-
scription of the present method for nonparametric
MANOVA in ecology, including reference to available
software, is described elsewhere (Anderson, in press).

This method is an elegant and rigorous alternative
to the partial Mantel test (Smouse et al. 1986), partial
redundancy analysis (partial RDA, Davies and Tso
1982), or partial canonical-correspondence analysis
(partial CCA, ter Braak 1988). Note also that, like CCA

or RDA, an eigenvalue decomposition of matrix HGH
gives orthogonal axes that can be readily used for con-
strained (i.e., canonical) ordination. Whereas partial
RDA implicitly preserves Euclidean distances and par-
tial CCA implicitly preserves x2 distances, the method
given here provides partitioning on the basis of any
symmetric distance or dissimilarity measure.

The method is a slight, but important, improvement
to the method of distance-based redundancy analysis
(db-RDA) given by Legendre and Anderson (1999)
(LA). P values obtained using the direct method de-
scribed here (Eq. 4, method 1) have correct type 1 error.
The other advantages of this direct approach are that
principal coordinate analysis (eigenanalysis of matrix
G) and subsequent correction for negative eigenvalues
are not necessary. Because the correction for negative
eigenvalues advocated by LA is monotonic across the
squared distances, db-RDA still gives a reasonable non-
parametric test under permutation. Nevertheless, P val-
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ues are affected in multifactorial designs using db-RDA
with a correction. Simulations show that db-RDA (or
the test using vectors of positive eigenvalues only) will
generally be too conservative.

We do not make any statements concerning the eco-
logical meaning per se of the negative eigenvalues.
Indeed, the concept of negative sums of squares, like
negative variance, is hard to grasp. We prefer to con-
sider that an ecologist will choose a distance measure,
such as the Bray-Curtis measure, because of its prop-
erties as a descriptor of multivariate ecological dissim-
ilarities among assemblages of species. It is perhaps
not surprising, after all, that a multivariate measure that
intuitively encapsulates ecological information does
not exactly conform to a straight-line distance, but in-
stead contains some real and some complex informa-
tion.

We also do not wish to presume that the Bray-Curtis
measure is necessarily going to be the measure of
choice for ecologists in all situations, even for data on
abundances of species. Indeed, some metric measures,
such as the x2 distance, may be the measure of choice
for a multivariate analysis of ecological community
composition. An excellent resource concerning the
multitude of available coefficients of ecological simi-
larity or dissimilarity, and their properties and uses, is
found in Legendre and Legendre (1998:Chapter 7).

Provided an ecologist is satisfied that the distance
measure chosen is reasonable, possessing all properties
relevant for the kind of variables being investigated,
then the direct analysis of these distances (method 1)
follows as a logical nonparametric procedure. This con-
trasts with the rather complex series of analyses needed
to do db-RDA. An appealing aspect of the approach
outlined here is that, if only one response variable is
measured and the Euclidean distance is used, then the
pseudo F statistic in Eq. 4 is Fisher’s univariate F sta-
tistic, which is well understood and widely used by
practicing researchers. If a semimetric distance mea-
sure is to be used with multivariate data, our approach
using the pseudo F statistic does not ignore complex
portions of the information in the data, nor does it
inflate the total sum of squares, and can be applied to
any experimental design.
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